Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34.935
Filter
1.
Sci Data ; 11(1): 377, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609426

ABSTRACT

Freshwater mussels of the order Unionida are a global conservation concern. Species of this group are strictly freshwater, sessile, slow-growing animals and, extremely sensitive to environmental changes. Human-mediated changes in freshwater habitats are imposing enormous pressure on the survival of freshwater mussels. Although a few flagship species are protected in Europe, other highly imperilled species receive much less attention. Moreover, knowledge about biology, ecology, and evolution and proper conservation assessments of many European species are still sparse. This knowledge gap is further aggravated by the lack of genomic resources available, which are key tools for conservation. Here we present the transcriptome assembly of Unio elongatulus C. Pfeiffer, 1825, one of the least studied European freshwater mussels. Using the individual sequencing outputs from eight physiologically representative mussel tissues, we provide an annotated panel of tissue-specific Relative Gene Expression profiles. These resources are pivotal to studying the species' biological and ecological features, as well as helping to understand its vulnerability to current and future threats.


Subject(s)
Transcriptome , Unio , Animals , Europe , Fresh Water , Unio/genetics
2.
Article in English | MEDLINE | ID: mdl-38629946

ABSTRACT

A novel Gram-stain-negative, yellow-pigmented, short rod-shaped bacterial strain, HBC34T, was isolated from a freshwater sample collected from Daechung Reservoir, Republic of Korea. The results of 16S rRNA gene sequence analysis indicated that HBC34T was affiliated with the genus Sphingobium and shared the highest sequence similarity to the type strains of Sphingobium vermicomposti (98.01 %), Sphingobium psychrophilum (97.87 %) and Sphingobium rhizovicinum (97.59 %). The average nucleotide identity (ANI) and digital DNA-DNA hybridisation (dDDH) values between HBC34T and species of the genus Sphingobium with validly published names were below 84.01 and 28.1 %, respectively. These values were lower than the accepted species-delineation thresholds, supporting its recognition as representing a novel species of the genus Sphingobium. The major fatty acids (>10 % of the total fatty acids) were identified as summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c). The main polar lipids were phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, two phospholipids and two unidentified polar lipids. The respiratory quinone was Q-10. The genomic DNA G+C content of HBC34T was 64.04 %. The polyphasic evidence supports the classification of HBC34T as the type strain of a novel species of the genus Sphingobium, for which the name Sphingobium cyanobacteriorum sp. nov is proposed. The type strain is HBC34T (= KCTC 8002T= LMG 33140T).


Subject(s)
Fatty Acids , Fresh Water , Base Composition , Fatty Acids/chemistry , RNA, Ribosomal, 16S/genetics , Phylogeny , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques
3.
Environ Monit Assess ; 196(5): 451, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38613723

ABSTRACT

As the general population's diet has shifted to reflect current weight-loss trends, there has been an increase in zero-calorie artificial sweetener usage. Sucralose (C12H19Cl3O8), commonly known as Splenda® in the USA, is a primary example of these sweeteners. In recent years, sucralose has been identified as an environmental contaminant that cannot easily be broken down via bacterial decomposition. This study focuses on the impact of sucralose presence on microbial communities in brackish and freshwater systems. Microbial respiration and fluorescence were measured as indicators of microbial activity in sucralose-dosed samples taken from both freshwater and estuarine marsh environments. Results showed a significant difference between microbial concentration and respiration when dosed with varying levels of sucralose. Diatom respiration implied a negative correlation of community abundance with sucralose concentration. The freshwater cyanobacterial respiration increased in the presence of sucralose, implying a positive correlation of community abundance with sucralose concentration. This was in direct contrast to its brackish water counterpart. However, further investigation is necessary to confirm any potential utility of these communities in the breakdown of sucralose in the marsh environment.


Subject(s)
Environmental Monitoring , Sucrose/analogs & derivatives , Wetlands , Humans , Sweetening Agents/toxicity , Fresh Water , Soil
4.
Sci Rep ; 14(1): 8618, 2024 04 14.
Article in English | MEDLINE | ID: mdl-38616216

ABSTRACT

The adaptability of cultured fish to complex flow conditions is crucial for their survival after being released into the wild. Running water in natural environments poses significant challenges for the proliferation and release of cultured fish. This study aimed to investigate the effects of flow stimulation on the adjustment capacity of cultured fish to cope with running water. The target fish were cultured grass carp. An annular flume was used to conduct tests on training and control groups. The results demonstrated an enhancement in the adjustment capacity of cultured fish following appropriate flow stimulation training. (1) The trained fish exhibited a heightened preference for low-velocity areas. (2) The trained fish displayed the ability to select a route characterized by low energy consumption, predominantly following the periphery of the low-velocity area. This suggested that an appropriate flow velocity could improve the sensitivity of training fish to water flow information, and their adjustment capacity to cope with running water improved to a certain extent. A higher adjustment capacity allowed them to process flow rate information rapidly and identify a migration strategy with lower energy consumption. This study provides a useful reference for enhancing the survival rate of grass carp through stock enhancement initiatives and contributes to the sustainability of freshwater ecosystems.


Subject(s)
Carps , Ecosystem , Animals , Environment , Fresh Water , Water
5.
Chemosphere ; 355: 141863, 2024 May.
Article in English | MEDLINE | ID: mdl-38579955

ABSTRACT

Bifenthrin (BF) is ubiquitous in aquatic environments, and studies have indicated that environmental concentrations of BF could cause neurotoxicity and oxidative damage in fish and decrease the abundance of aquatic insects. However, little information is available on the toxicity of BF in freshwater benthic mollusks. Bellamya aeruginosa (B. aeruginosa) is a key benthic fauna species in aquatic ecosystems, and has extremely high economic and ecological values. In this study, larval B. aeruginosa within 24 h of birth were exposed to 0, 30 or 300 ng/L of BF for 30 days, and then the toxic effects from molecular to individual levels were comprehensively evaluated in all the three treatment groups. It was found that BF at 300 ng/L caused the mortality of snails. Furthermore, BF affected snail behaviors, evidenced by reduced crawling distance and crawling speed. The hepatopancreas of snails in the two BF exposure groups showed significant pathological changes, including increase in the number of yellow granules and occurrence of hemocyte infiltration, epithelial cell thinning, and necrosis. The levels of ROS and MDA were significantly increased after exposure to 300 ng/L BF, and the activities of two antioxidant enzymes SOD and CAT were increased significantly. GSH content decreased significantly after BF exposure, indicating the occurrence of oxidative damage in snails. Transcriptomic results showed that differentially expressed genes (DEGs) were significantly enriched in pathways related to metabolism and neurotoxicity (e.g., oxidative phosphorylation and Parkinson disease), and these results were consistent with those in individual and biochemical levels above. The study indicates that environmental concentration of BF results in decreased survival rates, sluggish behavior, histopathological lesions, oxidative damage, and transcriptomic changes in the larvae of B. aeruginosa. Thus, exposure of larval snails to BF in the wild at concentrations similar to those used in this study might have adverse consequences at the population level. These findings provide a theoretical basis for further assessing the ecological risk of BF to aquatic gastropods.


Subject(s)
Gastropoda , Pseudomonas aeruginosa , Pyrethrins , Animals , Ecosystem , Larva , Fresh Water
6.
Folia Parasitol (Praha) ; 712024 Mar 26.
Article in English | MEDLINE | ID: mdl-38567394

ABSTRACT

The present paper comprises a systematic survey of trematodes found in 13 species of freshwater fishes in Venezuela collected in 1992, 1996 and 2001. The following 15 trematode species were recorded: Adults: Genarchella venezuelaensis sp. n., Thometrema dissimilis sp. n., Megacoelium spinicavum Thatcher et Varella, 1981, Doradamphistoma bacuense Thatcher, 1999, Crassicutis cichlasomae Manter, 1936, Parspina carapo Ostrowski de Núñez, Arredonto et Gil de Pertierra, 2011, Phyllodistomoides hoplerythrini sp. n. Larvae (metacercariae): Clinostomatopsis sorbens (Braun, 1899), Clinostomum marginatum (Rudolphi, 1819), C. detruncatum Braun, 1899, Ithyoclinostomum dimorphum (Diesing, 1850), Odhneriotrema microcephala (Travassos, 1922), Tylodelphys sp., Posthodiplostomum sp., Sphincterodiplostomum sp. All these parasites are reported from Venezuela for the first time and many of these findings represent new host records. The new species G. venezuelaensis sp. n., T. dissimilis sp. n. and P. hoplerythrini sp. n. were collected from the accessory respiratory organ of Loricariichthys brunneus (Hancock) (Loricariidae), from the stomach of Hoplerythrinus unitaeniatus (Spix et Agassiz) (Erythrinidae) and from the intestine of H. unitaeniatus, respectively. All parasites are briefly described and illustrated and problems concerning their morphology, taxonomy, hosts and geographical distribution are discussed. Megacoelium spinispecum Thatcher et Varella, 1981 is considered a junior synonym of M. spinicavum Thatcher et Varella, 1981, and Crassicutis opisthoseminis Bravo-Hollis et Arroyo, 1962 as a junior synonym of C. cichlasomae Manter, 1936.


Subject(s)
Catfishes , Characiformes , Fish Diseases , Parasites , Trematoda , Trematode Infections , Animals , Venezuela/epidemiology , Fishes/parasitology , Fresh Water , Fish Diseases/epidemiology , Fish Diseases/parasitology , Trematode Infections/epidemiology , Trematode Infections/veterinary , Trematode Infections/parasitology
7.
Environ Geochem Health ; 46(5): 160, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592564

ABSTRACT

As a notable toxic substance, metalloid arsenic (As) widely exists in water body and drinking As-contaminated water for an extended period of time can result in serious health concerns. Here, the performance of nanoscale zero-valent iron (nZVI) modified N-doped biochar (NBC) composites (nZVI@NBC) activated peroxydisulfate (PDS) for As(III) removal was investigated. The removal efficiencies of As(III) with initial concentration ranging from 50 to 1000 µg/L were above 99% (the residual total arsenic below 10 µg/L, satisfying the contaminant limit for arsenic in drinking water) within 10 min by nZVI@NBC (0.2 g/L)/PDS (100 µM). As(III) removal efficiency influenced by reaction time, PDS dosage, initial concentration, pH, co-existing ions, and natural organic matter in nZVI@NBC/PDS system were investigated. The nZVI@NBC composite is magnetic and could be conveniently collected from aqueous solutions. In practical applications, nZVI@NBC/PDS has more than 99% As(III) removal efficiency in various water bodies (such as deionized water, piped water, river water, and lake water) under optimized operation parameters. Radical quenching and EPR analysis revealed that SO4·- and ·OH play important roles in nZVI@NBC/PDS system, and the possible reaction mechanism was further proposed. These results suggest that nZVI@NBC activated peroxydisulfate may be an efficient and fast approach for the removal of water contaminated with As(III).


Subject(s)
Arsenic , Metalloids , Water , Fresh Water , Iron
8.
Sci Rep ; 14(1): 8259, 2024 04 09.
Article in English | MEDLINE | ID: mdl-38589560

ABSTRACT

Microalgae are widely exploited for numerous biotechnology applications, including biofuels. In this context, Chlamydomonas debaryana and Chlorococcum sp. were isolated from Fez freshwater (Morocco), and their growth and lipid and carbohydrate production were assessed at different concentrations of NaCl, NaNO3, and K2HPO4. The results indicate a small positive variation in growth parameters linked to nutrient enrichment, with no considerable variation in carbohydrate and lipid levels in both algae. Moreover, a negative variation was recorded at increased salinity and nutrient limitation, accompanied by lipid and carbohydrate accumulation. Chlorococcum sp. showed better adaptation to salt stress below 200 mM NaCl. Furthermore, its growth and biomass productivity were strongly reduced by nitrogen depletion, and its lipid production reached 47.64% DW at 3.52 mM NaNO3. As for Chlamydomonas debaryana, a substantial reduction in growth was induced by nutrient depletion, a maximal carbohydrate level was produced at less than 8.82 mM NaNO3 (40.59% DW). The effect of phosphorus was less significant. However, a concentration of 0.115 mM K2HPO4 increased lipid and carbohydrate content without compromising biomass productivity. The results suggest that growing the two Chlorophyceae under these conditions seems interesting for biofuel production, but the loss of biomass requires a more efficient strategy to maximize lipid and carbohydrate accumulation without loss of productivity.


Subject(s)
Chlorophyceae , Microalgae , Phosphorus , Lipids/chemistry , Salinity , Nitrogen , Morocco , Sodium Chloride , Carbohydrates , Fresh Water , Biomass , Biofuels
9.
Appl Microbiol Biotechnol ; 108(1): 294, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598011

ABSTRACT

Understanding the dynamic change in abundance of both fecal and opportunistic waterborne pathogens in urban surface water under different abiotic and biotic factors helps the prediction of microbiological water quality and protection of public health during recreational activities, such as swimming. However, a comprehensive understanding of the interaction among various factors on pathogen behavior in surface water is missing. In this study, the effect of salinity, light, and temperature and the presence of indigenous microbiota, on the decay/persistence of Escherichia coli and Pseudomonas aeruginosa in Rhine River water were tested during 7 days of incubation with varying salinity (0.4, 5.4, 9.4, and 15.4 ppt), with light under a light/dark regime (light/dark) and without light (dark), temperature (3, 12, and 20 °C), and presence/absence of indigenous microbiota. The results demonstrated that light, indigenous microbiota, and temperature significantly impacted the decay of E. coli. Moreover, a significant (p<0.01) four-factor interactive impact of these four environmental conditions on E. coli decay was observed. However, for P. aeruginosa, temperature and indigenous microbiota were two determinate factors on the decay or growth. A significant three-factor interactive impact between indigenous microbiota, temperature, and salinity (p<0.01); indigenous microbiota, light, and temperature (p<0.01); and light, temperature, and salinity (p<0.05) on the decay of P. aeruginosa was found. Due to these interactive effects, caution should be taken when predicting decay/persistence of E. coli and P. aeruginosa in surface water based on a single environmental condition. In addition, the different response of E. coli and P. aeruginosa to the environmental conditions highlights that E. coli monitoring alone underestimates health risks of surface water by non-fecal opportunistic pathogens, such as P. aeruginosa. KEY POINTS: Abiotic and biotic factors interactively affect decay of E. coli and P. aeruginosa E.coli and P.aeruginosa behave significantly different under the given conditions Only E. coli as an indicator underestimates the microbiological water quality.


Subject(s)
Escherichia coli , Pseudomonas aeruginosa , Rivers , Feces , Fresh Water
10.
Proc Biol Sci ; 291(2020): 20232768, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38565154

ABSTRACT

Prior research on metacommunities has largely focused on snapshot surveys, often overlooking temporal dynamics. In this study, our aim was to compare the insights obtained from metacommunity analyses based on a spatial approach repeated over time, with a spatio-temporal approach that consolidates all data into a single model. We empirically assessed the influence of temporal variation in the environment and spatial connectivity on the structure of metacommunities in tropical and Mediterranean temporary ponds. Employing a standardized methodology across both regions, we surveyed multiple freshwater taxa in three time periods within the same hydrological year from multiple temporary ponds in each region. To evaluate how environmental, spatial and temporal influences vary between the two approaches, we used nonlinear variation partitioning analyses based on generalized additive models. Overall, this study underscores the importance of adopting spatio-temporal analytics to better understand the processes shaping metacommunities. While the spatial approach suggested that environmental factors had a greater influence, our spatio-temporal analysis revealed that spatial connectivity was the primary driver influencing metacommunity structure in both regions. Temporal effects were equally important as environmental effects, suggesting a significant role of ecological succession in metacommunity structure.


Subject(s)
Fresh Water , Ponds , Climate , Spatio-Temporal Analysis , Ecosystem
11.
Proc Biol Sci ; 291(2020): 20232617, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38593844

ABSTRACT

When populations repeatedly adapt to similar environments they can evolve similar phenotypes based on shared genetic mechanisms (parallel evolution). The likelihood of parallel evolution is affected by demographic history, as it depends on the standing genetic variation of the source population. The three-spined stickleback (Gasterosteus aculeatus) repeatedly colonized and adapted to brackish and freshwater. Most parallel evolution studies in G. aculeatus were conducted at high latitudes, where freshwater populations maintain connectivity to the source marine populations. Here, we analysed southern and northern European marine and freshwater populations to test two hypotheses. First, that southern European freshwater populations (which currently lack connection to marine populations) lost genetic diversity due to bottlenecks and inbreeding compared to their northern counterparts. Second, that the degree of genetic parallelism is higher among northern than southern European freshwater populations, as the latter have been subjected to strong drift due to isolation. The results show that southern populations exhibit lower genetic diversity but a higher degree of genetic parallelism than northern populations. Hence, they confirm the hypothesis that southern populations have lost genetic diversity, but this loss probably happened after they had already adapted to freshwater conditions, explaining the high degree of genetic parallelism in the south.


Subject(s)
Fresh Water , Smegmamorpha , Animals , Smegmamorpha/genetics , Inbreeding , Genetic Variation
12.
J Environ Manage ; 357: 120766, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38565032

ABSTRACT

Biofouling presents hazards to a variety of freshwater and marine underwater infrastructures and is one of the direct causes of species invasion. These negative impacts provide a unified goal for both industry practitioners and researchers: the development of novel antifouling materials to prevent the adhesion of biofouling. The prohibition of tributyltin (TBT) by the International Maritime Organization (IMO) in 2001 propelled the research and development of new antifouling materials. However, the evaluation process and framework for these materials remain incomplete and unsystematic. This mini-review starts with the classification and principles of new antifouling materials, discussing and summarizing the methods for assessing their biofouling resistance. The paper also compiles the relevant regulations and environmental requirements from different countries necessary for developing new antifouling materials with commercial potential. It concludes by highlighting the current challenges in antifouling material development and future outlooks. Systematic evaluation of newly developed antifouling materials can lead to the emergence of more genuinely applicable solutions, transitioning from merely laboratory products to materials that can be effectively used in real-world applications.


Subject(s)
Biofouling , Biofouling/prevention & control , Fresh Water , Industry
13.
Int. microbiol ; 27(2): 559-569, Abr. 2024. ilus
Article in English | IBECS | ID: ibc-232301

ABSTRACT

Nervous necrosis virus (NNV) is the causative agent of viral nervous necrosis in freshwater and marine fishes. In this study, NNV circulating among wild and farmed Nile tilapia (Oreochromis niloticus) was genetically and morphologically characterized using reverse transcription polymerase chain reaction (RT-PCR), sequencing analysis, and transmission electron microscopy (TEM). Brain, eye, and other organ (spleen, kidney, heart, and liver) specimens were collected from 87 wild (66) and farmed (21) Nile tilapia fish during their adult or juvenile stage at different localities in Qena and Sohag governorates in southern Egypt. Among them, 57/87 fish showed suspected NNV clinical signs, and 30/87 were healthy. The results revealed that NNV was detected in 66 out of 87 fish (58.62% in the wild and 17.24% in farmed Nile tilapia by RT-PCR), and the prevalence was higher among diseased (55.17%) than in healthy (20.69%) fish. NNV was detected in the brain, eye, and other organs. Using TEM, virion size variations based on the infected organs were observed. Nucleotide sequence similarity indicated that NNVs had a divergence of 75% from other fish nodaviruses sequenced in Egypt and worldwide. Phylogenetic analysis distinguished them from other NNV genotypes, revealing the emergence of a new NNV genotype in southern Egypt. In conclusion, NNV is circulating among diseased and healthy Nile tilapia, and a new NNV genotype has emerged in southern Egypt. (AU)


Subject(s)
Animals , Necrosis , Fishes , Fresh Water , Genetics , DNA-Directed RNA Polymerases , Microscopy
14.
Int. microbiol ; 27(2): 607-614, Abr. 2024. ilus
Article in English | IBECS | ID: ibc-232305

ABSTRACT

Wetlands are the main natural sources of methane emissions, which make up a significant portion of greenhouse gas emissions. Such wetland patches serve as rich habitats for aerobic methanotrophs. Limited knowledge of methanotrophs from tropical wetlands widens the scope of study from these habitats. In the present study, a freshwater wetland in a tropical region in India was sampled and serially diluted to obtain methanotrophs in culture. This was followed by the isolation of methanotrophs on agarose-containing plates, incubated under methane: air atmosphere. Methanotrophs are difficult to cultivate, and very few cultures of methanotrophs are available from tropical wetlands. Our current study reports the cultivation of a diverse community of methanotrophs from six genera, namely, Methylomonas, Methylococcus, Methylomagnum, Methylocucumis (type I methanotrophs) along with Methylocystis, Methylosinus (type II methanotrophs). A high abundance of methanotrophs (106–1010 methanotrophs/g fresh weight) was observed in the samples. A Methylococcus strain could represent a putative novel species that was also isolated. Cultures of Methylomagnum and Methylocucumis, two newly described type I methanotrophs exclusively found in rice fields, were obtained. A large number of Methylomonas koyamae strains were cultured. Our study is pioneering in the documentation of culturable methanotrophs from a typical tropical wetland patch. The isolated methanotrophs can act as models for studying methanotroph-based methane mitigation from wetland habitats and can be used for various mitigation and valorization applications. (AU)


Subject(s)
Wetlands , Methane , Greenhouse Effect , Gases , Ecosystem , Fresh Water
15.
Sci Rep ; 14(1): 8885, 2024 04 17.
Article in English | MEDLINE | ID: mdl-38632301

ABSTRACT

The use of environmental DNA (eDNA) analysis has demonstrated notable efficacy in detecting the existence of freshwater species, including those that are endangered or uncommon. This application holds significant potential for enhancing environmental monitoring and management efforts. However, the efficacy of eDNA-based detection relies on several factors. In this study, we assessed the impact of rainfall on the detection of eDNA for the Siamese bat catfish (Oreoglanis siamensis). Quantitative polymerase chain reaction (qPCR) analysis indicated that samples from days with average rainfall exceeding 35 mm (classified as heavy and very heavy rain) yielded negative results. While eDNA detection remains feasible on light or moderate rainy days, a noteworthy reduction in eDNA concentration and qPCR-positive likelihood was observed. Analysis across 12 sampling sites established a statistically significant negative relationship (p < 0.001) between eDNA detection and rainfall. Specifically, for each 1 mm increase in rainfall, there was an observed drop in eDNA concentration of 0.19 copies/mL (±0.14). The findings of this study provide definitive evidence that precipitation has a significant impact on the detection of eDNA in Siamese bat catfish. However, in the case of adverse weather conditions occurring on the day of sampling, our research indicates that it is acceptable to continue with the task, as long as the rainfall is not heavy or very heavy. To enhance the effectiveness of an eDNA survey, it is crucial to consider many factors related to climatic conditions. The aforementioned factor holds significant importance not only for the specific species under scrutiny but also for the broader dynamics of the climate.


Subject(s)
Chiroptera , DNA, Environmental , Animals , DNA, Environmental/genetics , DNA/genetics , Chiroptera/genetics , Fresh Water , Environmental Monitoring/methods
16.
J Parasitol ; 110(2): 150-154, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38613824

ABSTRACT

Freshwater snails are commonly studied within the context of their role as intermediate hosts for digenetic trematodes. However, there are fundamental data deficiencies related to our understanding of directly transmitted parasites, such as coccidia, for freshwater snails. Because variation in coccidia pathogenicity and transmission among snail species likely has major impacts on snail community structure, we aimed to investigate the spatial distribution and prevalence of coccidia in several freshwater snail species throughout the Ozark and Ouachita Mountains ecoregions in Arkansas. We opportunistically collected 220 freshwater snails from 24 Ozark sites in summer 2022 and scanned fecal slides for the presence of coccidia. In summer 2023, we surveyed an additional 146 snails from 19 Ouachita sites. To test for apparent interactions among coccidia and trematodes, we scanned feces from a subset of snails (Physa and Planorbella in the Ozarks) that did not have concurrent trematode infections and from those that did. We observed oocysts that morphologically conformed to Pfeifferinella ellipsoides in 2 of the 9 snail taxa from 7 of the 43 sites. Planorbella trivolvis was infected at 2 of 6 sites in the Ozarks and 0 of 5 sites in the Ouachitas. Physa species were infected at 6 of 14 sites in the Ozarks and 0 of 12 sites in the Ouachitas. In the Ozarks, Pl. trivolvis had an overall prevalence of 0.13 (6 of 47), whereas individuals in the genus Physa had an overall prevalence of 0.08 (8 of 97). Our chi-square and Fisher exact tests revealed no significant evidence for trematode-coccidia competition or synergism within the two snail species. There were no other species infected, and we did not observe any coccidia in the snails from the Ouachitas. Our survey of 366 snails among 9 taxa and 43 sites represents the largest survey for freshwater snail coccidia to date and indicates that both Pl. trivolvis and Physa spp. may be primary hosts and/or reservoir hosts for Pf. ellipsoides in freshwater snail communities. The highly aggregated distribution of Pf. ellipsoides in northwestern Arkansas requires further investigation. Our results led to proposal of several hypotheses for additional research, including questions regarding the variation of coccidia host specificity and virulence.


Subject(s)
Coccidia , Snails , Humans , Prevalence , Arkansas , Fresh Water
17.
Open Vet J ; 14(1): 407-415, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633188

ABSTRACT

Background: Babesiosomes are apicomplexan parasites of both marine and freshwater fish species. Aim: In this study, we recorded the prevalence of Babesiosoma spp in two Egyptian freshwater fish species; the common carp and the African catfish with full pathological evaluation of the diseased condition, hematological and biochemical analysis of some parameters with exact recognition of the parasite with different methods. Methods: Two hundred and forty fish blood samples from Al-Sharqiya and Al-Ismailia governorates from August 2022 to January 2023 followed by blood film examinations, performing electron microscopy and molecular detection of the parasite via polymerase chain reaction. Results: The total infection prevalence was 63.75% with a higher prevalence observed among African catfish (42.5%) than Common carp (21.25%). Regarding hematologic parameters, the obtained results showed a significant decrease in the hematocrit values and a significant increase in the total leukocyte and lymphocyte values in both infected fish species. The serum ferritin, superoxide dismutase, and glutathione peroxidase were also significantly increased. However, the total iron binding capacity was significantly decreased. There was also a significant increase in the total serum bilirubin in the examined fish, all at (p < 0.001). Histopathologically, the lesions were more intense in the African catfish than the common carp but generally, the infected fish showed many changes with the gills being severely affected with pronounced hyperplasia of secondary lamellae with fusion and telangiectasis. The spleen, heart, and kidney are also affected. Conclusion: Serious adverse effects on the health status of previously examined fishes infected with Babesia spp. were observed and detected by several diagnostic and descriptive tools. Histopathological, hematological, and biochemical studies give an idea of the extent of these changes which are largely fatal affecting the economic system depending on the fish industry.


Subject(s)
Carps , Catfishes , Animals , Egypt , Fresh Water
18.
J Helminthol ; 98: e30, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38584420

ABSTRACT

Six species of freshwater turtles dominate the Chaco-Pampa Plain in southern South America and their parasites have been relatively understudied, with most records concentrated in Brazil. Particularly in Argentina, there are only scattered records of parasites for most of the turtles that inhabit the region, leaving a large knowledge gap. The purpose of the present contribution is to increase the knowledge of the internal parasites of six species of freshwater turtles from Argentina, after 15 years of fieldwork, by providing new hosts and additional geographic records for many host-parasite relationships. Some molecular sequences of the studied parasites were provided as a tool for better species identification. We processed 433 stomach and fecal samples from live individuals and visceral and soft tissue samples from 54 dissected turtles collected from a wide range and different ecoregions. We found 6230 helminths belonging to 18 taxa (one cestode, 11 digeneans and six nematodes). Fourteen new parasite-host associations are reported here, and for the first time parasites are recorded for Phrynops williamsi. This work contributes significantly to the knowledge of the parasitofauna in freshwater turtles in Argentina, providing a detailed list of parasites present in each turtle species and reporting molecular characters for future studies.


Subject(s)
Helminths , Parasites , Turtles , Animals , Turtles/parasitology , Helminths/genetics , Fresh Water , Brazil
19.
Article in Chinese | MEDLINE | ID: mdl-38604684

ABSTRACT

OBJECTIVE: To investigate the population distribution of intermediate host snails and crabs of Paragonimus along the Jiulongjiang River, Zhangjiang River, and Dongxi River basins in Bopingling Mountain, southern Fujian Province, so as to provide baseline data for researches on parasitic disease prevention and control and enlargement of samples in the parasitic resource bank. METHODS: A total of 23 villages in 8 counties (districts) along the Jiulong River, Zhangjiang River, and Dongxi River basins in Zhangzhou City, Fujian Province were selected as survey sites during the period from November 2020 through March 2023, and snail and freshwater crabs were sampled from 1 to 3 streams and ditches neighboring residential areas in each village. Morphological identification of snails was performed according to the external morphological characteristics of collected snail shells, and the unidentified snail species sampled from the natural foci of paragonimiasis in Yunxiao County were subjected to se-quence analysis of the mitochondrial cytochrome oxidase 1 (CO1) gene. The crab species was identified by observing the morphological characteristics of the terminal segment of the first pleopod of male crabs, and Paragonimus cercariae and metacercariae were detected in collected snails. RESULTS: The shells of the unidentified snails sampled from the natural foci of paragonimiasis in Yunxiao County were approximately 50 mm in height and 18 mm in width, thick and solid, long tower cone-shaped, and had 8 to 10 whorls. CO1 gene sequence analysis identified the snail species as Sulcospira hainanensis. A total of 6 freshwater snail species belonging to 5 genera within 3 families, identified 23 survey sites, including Semisulcospira libertina, Paludomus zhangchouensis and S. hainanensis that belonged to the Family Pleurceridae, Tricula fujianensis and T. huaanensis that belonged to the subfamily Triculinae, Family Pomatiopsidae, and Melanoides tuberculata (Family Thiaridae), and 11 species of freshwater crabs belonging to 5 genera within 2 families were identified, including Sinopotamon genus of S. jianglense, S. pinheense, and S. zhangzhouense, Huananpotamon genus of H. planopodum and H. zhangzhouense, Nanhaipotamon genus of N. huaanense and N. longhaiense, and Minpotamon genus of M. nasicum and M. auritum that belonged to the Family Potamidae, and Somanniathelphusa genus of S. huaanensis and S. zhangpuensis (Family Parathelphusidae). In addition, the prevalence of P. westermani cercariae infections was 0.08% (2/2 317) in P. zhangchouensis from Danyan Village in Changtai District and 0.09% (1/1 039) in S. hainanensis from Jinkeng Village in Yunxiao County, and the prevalence of P. westermani metacercariae infections was 25.81% (8/31) in S. jianglense from Danyan Village in Changtai District, and 26.31% (5/19) in S. zhangzhouense from Jinkeng Village in Yunxiao County, respectively. CONCLUSIONS: There is a population diversity in the intermediate host snails and crabs along the Jiulongjiang River, Zhangjiang River, and Dongxi River basins in Bopingling Mountain, southern Fujian Province, and P. zhangzhouensis and S. hainanensis are, for the first time, confirmed as the first intermediate hosts of P. westermani.


Subject(s)
Brachyura , Gastropoda , Paragonimiasis , Paragonimus , Humans , Animals , Male , Paragonimus/genetics , Brachyura/parasitology , Paragonimiasis/epidemiology , Rivers , Fresh Water
20.
PLoS One ; 19(4): e0302170, 2024.
Article in English | MEDLINE | ID: mdl-38625927

ABSTRACT

Reliable population estimates are important for making informed management decisions about wildlife species. Standardized survey protocols have been developed for monitoring population trends of the wood turtle (Glyptemys insculpta), a semi-aquatic freshwater turtle species of conservation concern throughout its distribution in east-central North America. The protocols use repeated active search surveys of defined areas, allowing for estimation of survey-specific detection probability (p) and site-specific abundance. These protocols assume population closure within the survey area during the survey period, which is unlikely to be met as wood turtles are a highly mobile species. Additionally, current protocols use a single-pass design that does not allow for separation of availability (pa) and detectability (pd). If there are systematic influences on pa or pd that are not accounted for in the survey design or data analysis, then resulting abundance estimates could be biased. The objectives of this study were to determine if pa is a random process and if pa and pd are influenced by demographic characteristics. We modified the wood turtle survey protocol used in the upper Midwest to include a double-pass design, allowing us to estimate pa and pd using a robust design capture-recapture model. The modified protocol was implemented at 14 wood turtle monitoring sites in Minnesota and Wisconsin between 2017 and 2022. Our results indicated that pa was non-random and that pd increased with turtle carapace length. Our study suggests that model assumptions for current wood turtle population models may be violated, likely resulting in an overestimation of abundance. We discuss possible protocol and modeling modifications that could result in more accurate wood turtle abundance estimates.


Subject(s)
Turtles , Animals , Animals, Wild , North America , Fresh Water , Minnesota
SELECTION OF CITATIONS
SEARCH DETAIL
...